

LM567, LM567C

SNOSBQ4E -MAY 1999-REVISED DECEMBER 2014

LM567x Tone Decoder

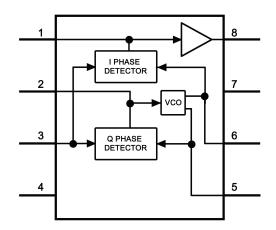
Features

- 20 to 1 Frequency Range With an External
- Logic Compatible Output With 100-mA Current Sinking Capability
- Bandwidth Adjustable From 0 to 14%
- High Rejection of Out of Band Signals and Noise
- Immunity to False Signals
- Highly Stable Center Frequency
- Center Frequency Adjustable from 0.01 Hz to 500 kHz

Applications

- **Touch Tone Decoding**
- Precision Oscillator
- Frequency Monitoring and Control
- Wide Band FSK Demodulation
- Ultrasonic Controls
- Carrier Current Remote Controls
- Communications Paging Decoders

3 Description


The LM567 and LM567C are general purpose tone decoders designed to provide a saturated transistor switch to ground when an input signal is present within the passband. The circuit consists of an I and Q detector driven by a voltage controlled oscillator which determines the center frequency of the External components are independently set center frequency, bandwidth and output delay.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)	
LM567C	SOIC (8)	4.90 mm × 3.91 mm	
LIVISO/C	PDIP (8)	9.81 mm × 6.35 mm	

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Diagram

Table of Contents

1	Features 1		10.2 Functional Block Diagram	
-				
2	Applications 1		10.3 Feature Description	
3	Description 1		10.4 Device Functional Modes	
4	Simplified Diagram 1	11	Application and Implementation	
5	Revision History2		11.1 Application Information	13
6	Device Comparison Table		11.2 Typical Applications	13
7	Pin Configuration and Functions	12	Power Supply Recommendations	19
8	Specifications	13	Layout	19
0	•		13.1 Layout Guidelines	19
	8.1 Absolute Maximum Ratings		13.2 Layout Example	
	8.2 Recommended Operating Conditions 4	14	Device and Documentation Support	
	8.3 Thermal Information 4			
	8.4 Electrical Characteristics 5		14.1 Related Links	
	8.5 Typical Characteristics		14.2 Trademarks	20
9	Parameter Measurement Information 8		14.3 Electrostatic Discharge Caution	20
_			14.4 Glossary	2
10	Detailed Description 8	15	Mechanical, Packaging, and Orderable	
	10.1 Overview	13	Information	2

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

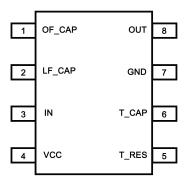
Changes from Revision D (March 2013) to Revision E

Page

Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional
Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

Changes from Revision C (March 2013) to Revision D

Page



6 Device Comparison Table

DEVICE NAME	DESCRIPTION			
LM567, LM567C	General Purpose Tone Decoder			
LMC567	Same as LM567C, but lower power supply current consumption and double oscillator frequency			

7 Pin Configuration and Functions

8-Pin PDIP (P) and SOIC (D) Package Top View

Pin Functions

PIN		TVDE	DESCRIPTION		
NAME	NO.	TYPE	DESCRIPTION		
GND	7	Р	Circuit ground.		
IN	3	I	Device input.		
LF_CAP	2	I	Loop filter capacitor pin (LPF of the PLL).		
OUT	8	0	Device output.		
OF_CAP	1	I	Output filter capacitor pin.		
T_CAP	5	1	Timing capacitor connection pin.		
T_RES	6	I	Timing resistor connection pin.		
VCC	4	Р	Voltage supply pin.		

Product Folder Links: LM567 LM567C

8 Specifications

8.1 Absolute Maximum Ratings (1)(2)(3)

			MIN	MAX	UNIT
Supply Voltage Pin				9	V
Power Dissipation ⁽⁴⁾				1100	mW
V ₈				15	V
V ₃				-10	V
V_3				V ₄ + 0.5	V
	LM567CM, LM567CN		0	70	°C
On anating Tagana antique Dagana	PDIP Package	Soldering (10 s)		260	°C
Operating Temperature Range Vapor Phase (60 s		Vapor Phase (60 s)		215	°C
	SOIC Package	Infrared (15 s)		220	°C
Storage temperature range, T _{stq}				150	°C

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the Recommended Operating Conditions. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.
- (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
- (3) See http://www.ti.com for other methods of soldering surface mount devices.
- (4) The maximum junction temperature of the LM567 and LM567C is 150°C. For operating at elevated temperatures, devices in the DIP package must be derated based on a thermal resistance of 110°C/W, junction to ambient. For the SOIC package, the device must be derated based on a thermal resistance of 160°C/W, junction to ambient.

8.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC}	Supply Voltage	3.5	8.5	V
V _{IN}	Input Voltage Level	-8.5	8.5	V
T _A	Operating Temperature Range	-20	120	°C

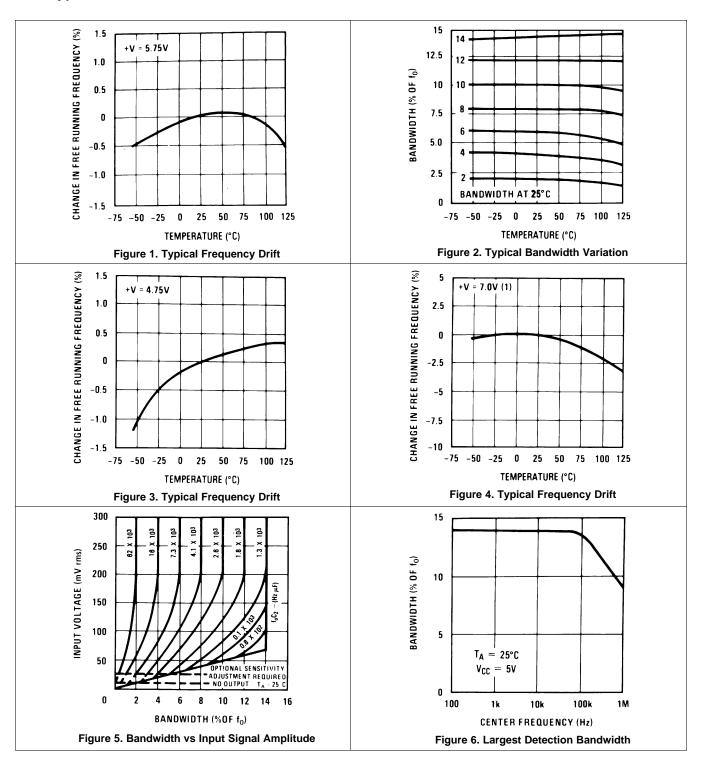
8.3 Thermal Information

		LMS	LM567C		
	THERMAL METRIC(1)		Р	UNIT	
		8 P	INS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	107.5	53.0		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	54.6	42.3		
$R_{\theta JB}$	Junction-to-board thermal resistance	47.5	30.2	°C/W	
Ψ_{JT}	Junction-to-top characterization parameter	10.0	19.6		
ΨЈВ	Junction-to-board characterization parameter	47.0	30.1		

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

Submit Documentation Feedback

8.4 Electrical Characteristics


AC Test Circuit, $T_A = 25$ °C, $V^+ = 5 V$

DADAMETED	TEST CONDITIONS		LM567		LM567C/LM567CM			UNIT
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Power Supply Voltage Range		4.75	5.0	9.0	4.75	5.0	9.0	V
Power Supply Current Quiescent	R _L = 20k		6	8		7	10	mA
Power Supply Current Activated	R _L = 20k		11	13		12	15	mA
Input Resistance		18	20		15	20		kΩ
Smallest Detectable Input Voltage	$I_L = 100 \text{ mA}, f_i = f_0$		20	25		20	25	mVrms
Largest No Output Input Voltage	$I_C = 100 \text{ mA}, f_i = f_o$	10	15		10	15		mVrms
Largest Simultaneous Outband Signal to Inband Signal Ratio			6			6		dB
Minimum Input Signal to Wideband Noise Ratio	B _n = 140 kHz		-6			-6		dB
Largest Detection Bandwidth		12	14	16	10	14	18	% of f _o
Largest Detection Bandwidth Skew			1	2		2	3	% of f _o
Largest Detection Bandwidth Variation with Temperature			±0.1			±0.1		%/°C
Largest Detection Bandwidth Variation with Supply Voltage	4.75 – 6.75 V		±1	±2		±1	±5	%V
Highest Center Frequency		100	500		100	500		kHz
Center Frequency Stability (4.75 – 5.75 V)	0 < T _A < 70 -55 < T _A < +125		35 ± 60 35 ± 140			35 ± 60 35 ± 140		ppm/°C ppm/°C
Center Frequency Shift with Supply Voltage	4.75 V – 6.75 V 4.75 V – 9 V		0.5	1.0 2.0		0.4	2.0 2.0	%/V %/V
Fastest ON-OFF Cycling Rate			f _o /20			f _o /20		
Output Leakage Current	V ₈ = 15 V		0.01	25		0.01	25	μΑ
Output Saturation Voltage	e _i = 25 mV, I ₈ = 30 mA e _i = 25 mV, I ₈ = 100 mA		0.2 0.6	0.4 1.0		0.2 0.6	0.4 1.0	V
Output Fall Time			30			30		ns
Output Rise Time			150			150		ns

Submit Documentation Feedback

8.5 Typical Characteristics

Typical Characteristics (continued)

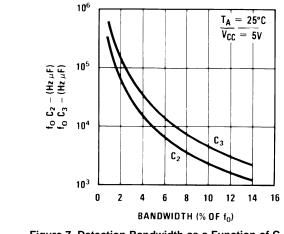
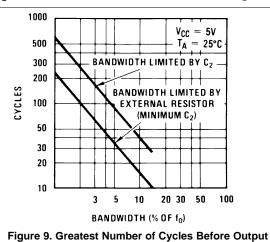



Figure 7. Detection Bandwidth as a Function of C2 and C3

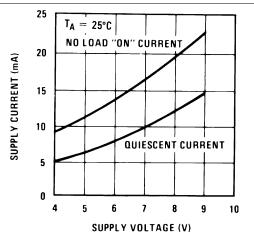


Figure 8. Typical Supply Current vs Supply Voltage

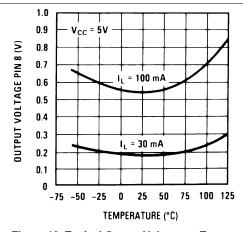
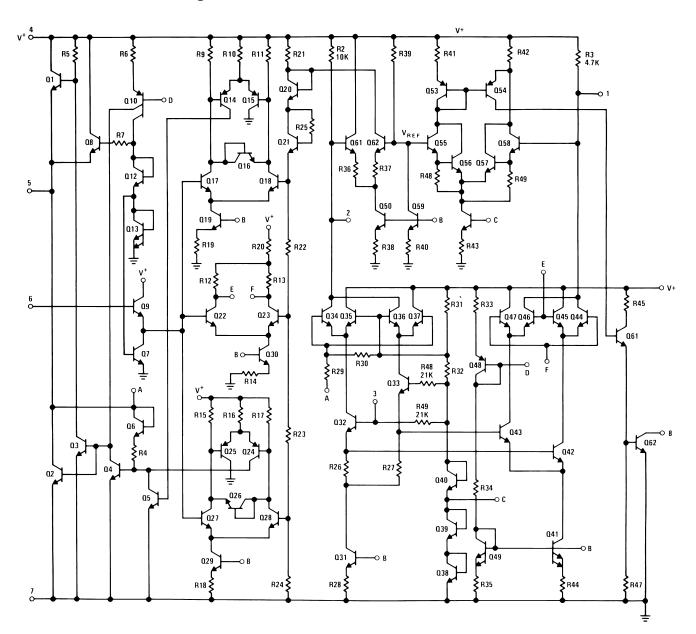


Figure 10. Typical Output Voltage vs Temperature

9 Parameter Measurement Information


All parameters are measured according to the conditions described in the Specifications section.

10 Detailed Description

10.1 Overview

The LM567C is a general purpose tone decoder. The circuit consists of I and Q detectors driven by a voltage controlled oscillator which determines the center frequency of the decoder. This device is designed to provide a transistor switch to ground output when the input signal frequency matches the center frequency pass band. Center frequency is set by an external timing circuit composed by a capacitor and a resistor. Bandwidth and output delay are set by external capacitors.

10.2 Functional Block Diagram

Submit Documentation Feedback

Copyright © 1999–2014, Texas Instruments Incorporated

(1)

10.3 Feature Description

10.3.1 Center Frequency

The center frequency of the LM567 tone decoder is equal to the free running frequency of the voltage controlled oscillator. In order to set this frequency, external components should be placed externally. The component values are given by:

$$f_0 \approx \frac{1.1}{R_1 C_1}$$

where

10.3.2 Output Filter

To eliminate undesired signals that could trigger the output stage, a post detection filter is featured in the LM567C. This filter consists of an internal resistor $(4.7K-\Omega)$ and an external capacitor. Although typically external capacitor value is not critical, it is recommended to be at least twice the value of the loop filter capacitor. If the output filter capacitor value is too large, the turn-on and turn off-time of the output will present a delay until the voltage across this capacitor reaches the threshold level.

10.3.3 Loop Filter

The phase locked loop (PLL) included in the LM567 has a pin for connecting the low pass loop filter capacitor. The selection of the capacitor for the filter depends on the desired bandwidth. The device bandwidth selection is different according to the input voltage level. Refer to the *Operation With V_i* < $200m - V_{RMS}$ section and the *Operation With V_i* > $200m - V_{RMS}$ section for more information about the loop filter capacitor selection.

10.3.4 Logic Output

The LM567 is designed to provide a transistor switch to ground output when the input signal frequency matches the center frequency pass band. The logic output is an open collector power transistor that requires an external load resistor that is used to regulate the output current level.

10.3.5 Die Characteristics

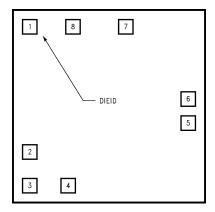


Figure 11. Die Layout (C - Step)

Submit Documentation Feedback

Feature Description (continued)

Table 1. Die and Wafer Characteristics

Fabrication Attributes		General Die Information				
Physical Die Identification LM567C		Bond Pad Opening Size (min)	91µm x 91µm			
Die Step C		Bond Pad Metalization	0.5% COPPER_BAL. ALUMINUM			
Physical Attributes		Passivation	VOM NITRIDE			
Wafer Diameter	150mm	Back Side Metal	BARE BACK			
Dise Size (Drawn) 1600µm x 1626µm 63.0mils x 64.0mils		Back Side Connection	Floating			
Thickness	406µm Nominal		·			
Min Pitch 198µm Nominal						
Special Assembly Requirements:						
Note: Actual die size is rounded to the neares	t micron.					

Die Bond Pad Coordinate Locations (C - Step)						
	(Referenced to	die center, coordina	ates in µm) NC = No	Connection, N.U.	= Not Used	
OLONIAL NAME	DAD#AUMDED	X/Y COO	RDINATES		PAD SIZE	
SIGNAL NAME	PAD# NUMBER	Х	Υ	Х		Y
OUTPUT FILTER	1	-673	686	91	х	91
LOOP FILTER	2	-673	-419	91	х	91
INPUT	3	-673	-686	91	х	91
V+	4	-356	-686	91	х	91
TIMING RES	5	673	-122	91	х	91
TIMING CAP	6	673	76	91	х	91
GND	7	178	686	117	х	91
OUTPUT	8	-318	679	117	х	104

10.4 Device Functional Modes

10.4.1 Operation With $V_i < 200m - V_{RMS}$

When the input signal is below a threshold voltage, typically 200m-VRMS, the bandwidth of the detection band should be calculated .

BW = 1070
$$\sqrt{\frac{V_i}{f_o C_2}}$$
 in % of f_o

where

- V_i = Input voltage (volts rms), $V_i \le 200 \text{mV}$
- C₂ = Capacitance at Pin 2(µF)

Submit Documentation Feedback

Copyright © 1999–2014, Texas Instruments Incorporated

Device Functional Modes (continued)

10.4.2 Operation With $V_i > 200m - V_{RMS}$

For input voltages greater than 200m-VRMS, the bandwidth depends directly from the loop filter capacitance and free running frequency product. Bandwidth is represented as a percentage of the free running frequency, and according to the product of f0·C2, it can have a variation from 2 to 14%. Table 2 shows the approximate values for bandwidth in function of the product result.

Table 2. Detection Bandwidth in Function of fo x C2

f _o × C ₂ (kHzμF)	Bandwidth (% of f _o)
62	2
16	4
7.3	6
4.1	8
2.6	10
1.8	12
1.3	14
< 1.3	14

Submit Documentation Feedback

Product Folder Links: LM567 LM567C

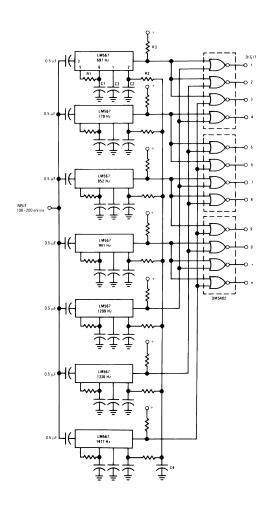
11 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

11.1 Application Information

The LM567 tone decoder is a device capable of detecting if an input signal is inside a selectable range of detection. The device has an open collector transistor output, so an external resistor is required to achieve proper logic levels. When the input signal is inside the detection band, the device output will go to a LOW state. The internal VCO free running frequency establishes the detection band central frequency. An external RC filter is required to set this frequency. The bandwidth in which the device will detect the desired frequency depends on the capacitance of loop filter terminal. Typically a 1 μ F capacitor is connected to this pin. The device detection band has a different behavior for low and high input voltage levels. Refer to the *Operation With V_i* < 200m - V_{RMS} section and the *Operation With V_i* > 200m - V_{RMS} section for more information.


Submit Documentation Feedback

Copyright © 1999–2014, Texas Instruments Incorporated

11.2 Typical Applications

11.2.1 Touch-Tone Decoder

Component values (typ)

R1 6.8 to 15k

R2 4.7k

R3 20k

C1 0.10 mfd

C2 1.0 mfd 6V

C3 2.2 mfd 6V

C4 250 mfd 6V

Figure 12. Touch-Tone Decoder

11.2.1.1 Design Requirements

PARAMETERS	VALUES
Supply Voltage Range	3.5 V to 8.5 V
Input Voltage Range	20 mV _{RMS} to VCC + 0.5
Input Frequency	1 Hz to 500 kHz
Output Current	Max. 15 mA

Product Folder Links: LM567 LM567C

11.2.1.2 Detailed Design Procedure

11.2.1.2.1 Timing Components

To calculate the timing components for an approximated desired central detection frequency (f_0) , the timing capacitor value (C_1) should be stated in order to calculate the timing resistor value (R_1) . Typically for most applications, a 0.1- μ F capacitor is used.

$$f_o \approx \frac{1.1}{R_1 C_1} \tag{2}$$

11.2.1.2.2 Bandwidth

Detection bandwidth is represented as a percentage of f0. It can be selected based on the input voltage levels (Vi). For Vi $< 200 \text{ mV}_{RMS}$,

BW = 1070
$$\sqrt{\frac{V_i}{f_o C_2}}$$
 in % of f_o (3)

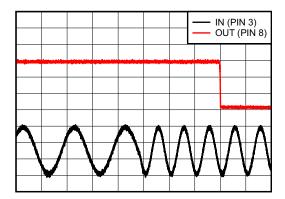
For Vi > 200 mV_{RMS}, refer to Table 2 or Figure 5.

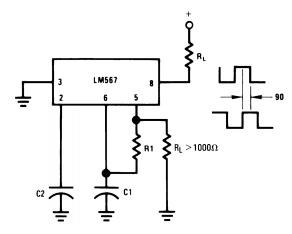
11.2.1.2.3 Output Filter

The output filter selection is made considering the capacitor value to be at least twice the Loop filter capacitor.

$$C_3 \ge 2C_2 \tag{4}$$

11.2.1.3 Application Curve




Figure 13. Frequency Detection

Submit Documentation Feedback

Copyright © 1999–2014, Texas Instruments Incorporated

11.2.2 Oscillator with Quadrature Output

Connect Pin 3 to 2.8V to Invert Output

Figure 14. Oscillator with Quadrature Output

11.2.2.1 Design Requirements

Refer to the previous *Design Requirements* section.

11.2.2.2 Detailed Design Procedure

Refer to the previous *Detailed Design Procedure* section.

11.2.2.3 Application Curve

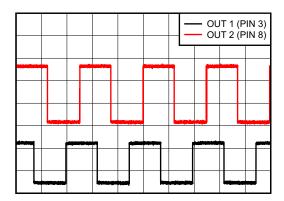


Figure 15. Quadrature Output

11.2.3 Oscillator with Double Frequency Output

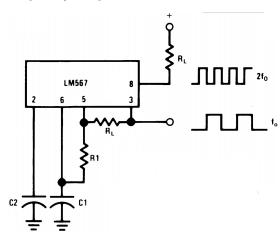


Figure 16. Oscillator with Double Frequency Output

11.2.3.1 Design Requirements

Refer to the previous Design Requirements section.

11.2.3.2 Detailed Design Procedure

Refer to the previous *Detailed Design Procedure* section.

11.2.3.3 Application Curve

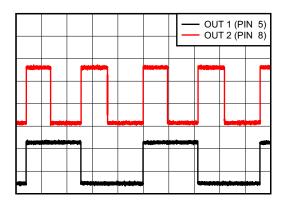


Figure 17. Double Frequency Output

Submit Documentation Feedback

11.2.4 Precision Oscillator Drive 100-mA Loads

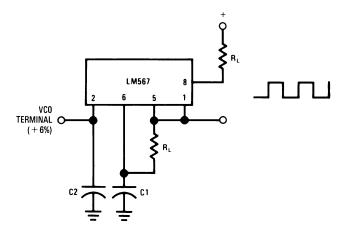


Figure 18. Precision Oscillator Drive 100-mA Loads

11.2.4.1 Design Requirements

Refer to the previous *Design Requirements* section.

11.2.4.2 Detailed Design Procedure

Refer to the previous *Detailed Design Procedure* section.

11.2.4.3 Application Curve

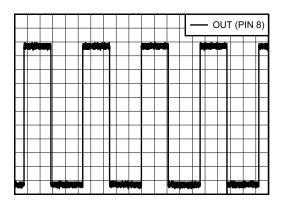
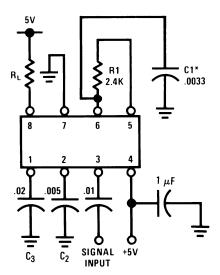



Figure 19. Output for 100-mA Load

11.2.5 AC Test Circuit

 f_i = 100 kHz + 5 V *Note: Adjust for f_o = 100 kHz.

11.2.5.1 Design Requirements

Refer to the previous *Design Requirements* section.

11.2.5.2 Detailed Design Procedure

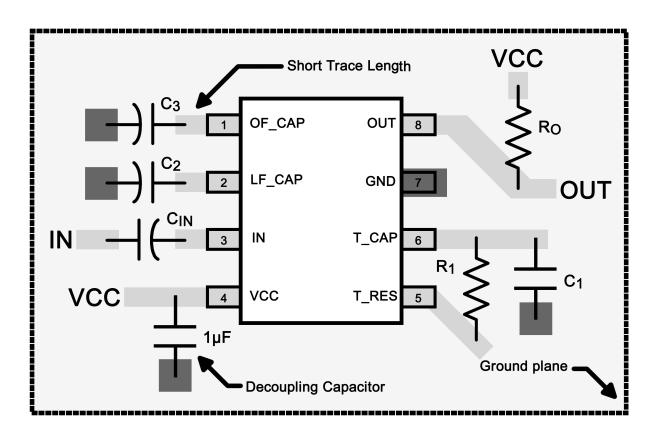
Refer to the previous *Detailed Design Procedure* section.

11.2.5.3 Application Curve

Refer to the previous *Application Curve* section.

Submit Documentation Feedback

12 Power Supply Recommendations


The LM567C is designed to operate with a power supply up to 9 V. It is recommended to have a well regulated power supply. As the operating frequency of the device could be very high for some applications, the decoupling of power supply becomes critical, so is required to place a proper decoupling capacitor as close as possible to VCC pin.

13 Layout

13.1 Layout Guidelines

The VCC pin of the LM567 should be decoupled to ground plane as the device can work with high switching speeds. The decoupling capacitor should be placed as close as possible to the device. Traces length for the timing and external filter components should be kept at minimum in order to avoid any possible interference from other close traces.

13.2 Layout Example

Top Layer Ground Pour

Pad toTop Layer Ground Pour

Top Layer Signal Traces

Figure 20. LM567 Layout Example

14 Device and Documentation Support

14.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 3. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
LM567	Click here	Click here	Click here	Click here	Click here	
LM567C	Click here	Click here	Click here	Click here	Click here	

14.2 Trademarks

All trademarks are the property of their respective owners.

14.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

14.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

15 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: LM567 LM567C

15-Apr-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM567CM	LIFEBUY	SOIC	D	8	95	TBD	Call TI	Call TI	0 to 70	LM 567CM	
LM567CM/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	LM 567CM	Samples
LM567CMX	LIFEBUY	SOIC	D	8	2500	TBD	Call TI	Call TI		LM 567CM	
LM567CMX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	LM 567CM	Samples
LM567CN/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 70	LM 567CN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

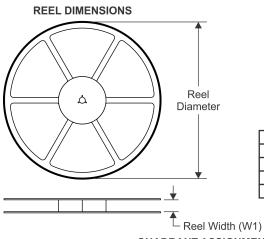
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

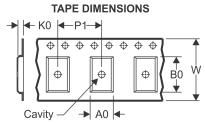
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

15-Apr-2017

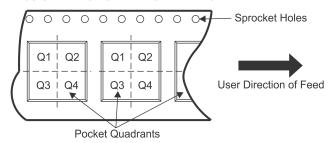
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

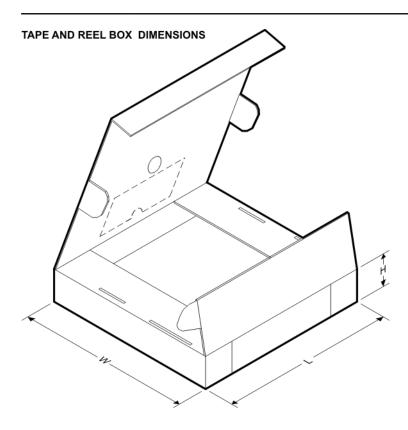

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Apr-2017


TAPE AND REEL INFORMATION

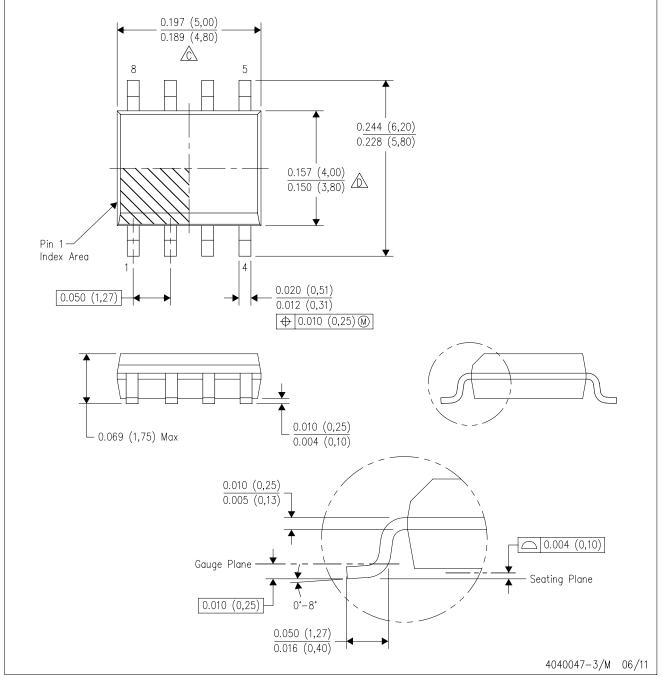
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM567CMX	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LM567CMX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1

www.ti.com 14-Apr-2017

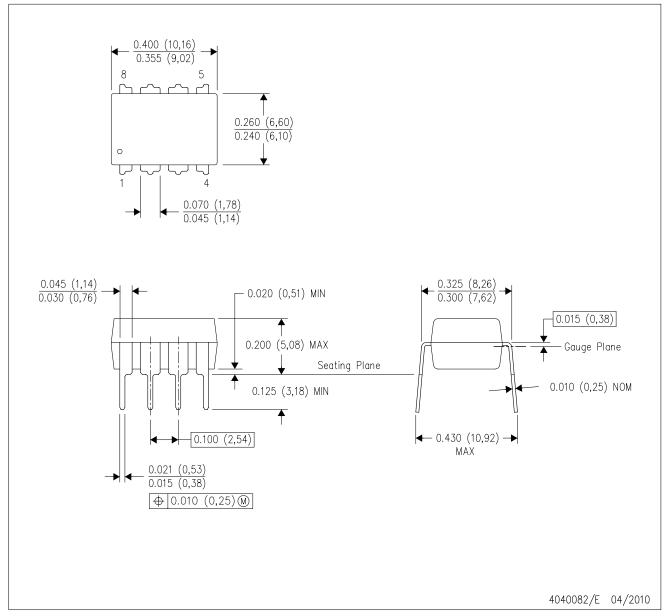


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM567CMX	SOIC	D	8	2500	367.0	367.0	35.0
LM567CMX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.