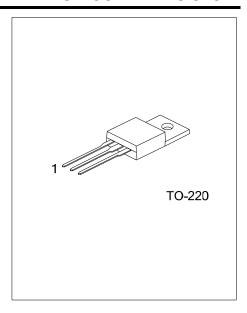
# UNISONIC TECHNOLOGIES CO., LTD

# 2SC4242

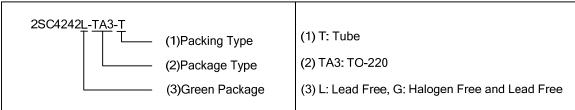
## NPN SILICON TRANSISTOR


# SWITCHMODE SERIES NPN **POWER TRANSISTORS**

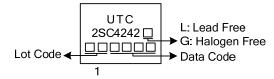
#### DESCRIPTION

The UTC 2SC4242 is a high-voltage, high-speed switching power transistor and designed particularly for 115 and 220V switch mode applications, such as switching regulators, inverters, DC-DC converter and general purpose power amplifiers.

#### **FEATURES**


- \* Low saturation voltage.
- \* Switching time: t<sub>F</sub>=0.5µs (Max.)@ I<sub>C</sub>=5.0A
- \* High reliability




## **ORDERING INFORMATION**

| Ordering Number |                   | Dealtage | Pin Assignment |   |   | Deaking |  |
|-----------------|-------------------|----------|----------------|---|---|---------|--|
| Normal          | Lead Free Plating | Package  | 1              | 2 | 3 | Packing |  |
| 2SC4242-TA3-T   | 2SC4242L-TA3-T    | TO-220   | В              | С | Е | Tube    |  |

Note: Pin Assignment: B: Base E: Emitter C: Collector



#### **MARKING**



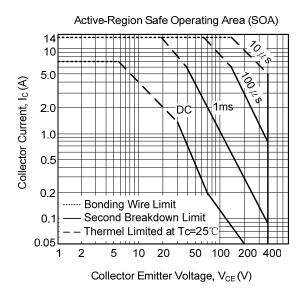
www.unisonic.com.tw 1 of 4 Copyright © 2016 Unisonic Technologies Co., Ltd QW-R203-033.B

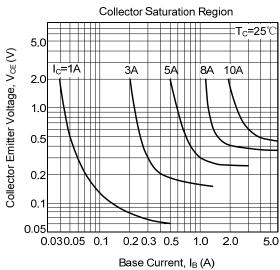
## ■ ABSOLUTE MAXIMUM RATINGS

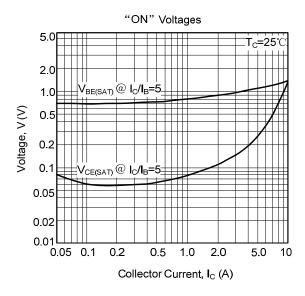
| PARAMETER                                                       |                          | SYMBOL           | RATINGS    | UNIT |
|-----------------------------------------------------------------|--------------------------|------------------|------------|------|
| Collector-Emitter Voltage                                       |                          | $V_{CEO}$        | 400        | V    |
| Collector-Base Voltage                                          |                          | $V_{CBO}$        | 450        | V    |
| Emitter-Base Voltage                                            | Voltage V <sub>EBO</sub> |                  | 8.0        | V    |
| Collector Current                                               | Continuous               | Ic               | 7.0        | Α    |
| Collector Current                                               | Peak                     | I <sub>CM</sub>  | 14         | Α    |
| Base Current                                                    |                          | I <sub>B</sub>   | 2.0        | Α    |
| Total Power Dissipation @T <sub>C</sub> =25°C Derate Above 25°C |                          | В                | 40         | W    |
|                                                                 |                          | $P_D$            | 0.32       | W/°C |
| Junction Temperature                                            |                          | T <sub>J</sub>   | +150       | °C   |
| Storage Temperature                                             |                          | T <sub>STG</sub> | -40 ~ +150 | °C   |

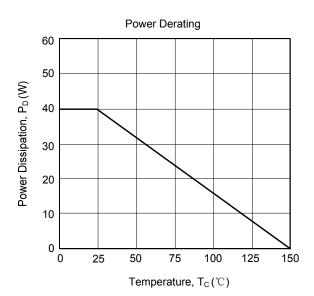
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

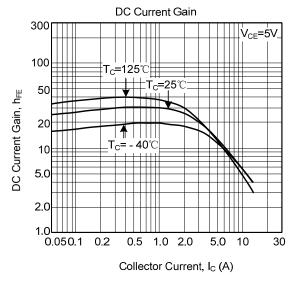
#### **■ THERMAL DATA**

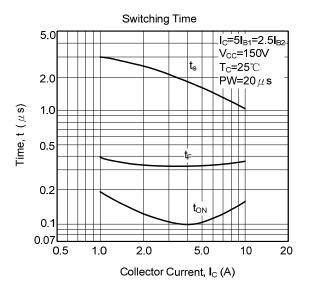

| PARAMETER                         | SYMBOL        | RATINGS | UNIT |
|-----------------------------------|---------------|---------|------|
| Thermal Resistance Junction -Case | $\theta_{JC}$ | 4       | °C/W |


# ■ **ELECTRICAL CHARACTERISTICS** (T<sub>C</sub>=25°C, unless otherwise specified)


| PARAMETER                            | SYMBOL                | TEST CONDITIONS                                                                  | MIN | TYP | MAX | UNIT |  |  |
|--------------------------------------|-----------------------|----------------------------------------------------------------------------------|-----|-----|-----|------|--|--|
| OFF CHARACTERISTICS                  |                       |                                                                                  |     |     |     |      |  |  |
| Collector-Emitter Sustaining Voltage | $BV_CEO$              | I <sub>CEO</sub> =100mA, I <sub>B</sub> =0                                       | 400 |     |     | V    |  |  |
| Collector-Base Breakdown Voltage     | $BV_{CBO}$            | I <sub>CBO</sub> =1.0mA, I <sub>E</sub> =0                                       | 450 |     |     | V    |  |  |
| Emitter-Base Breakdown Voltage       | $BV_{EBO}$            | I <sub>EBO</sub> =1.0mA, I <sub>C</sub> =0                                       | 8.0 |     |     | V    |  |  |
| Collector Cutoff Current             | $I_{CBO}$             | V <sub>CBO</sub> =450V, I <sub>E</sub> =0                                        |     |     | 100 | μΑ   |  |  |
| Emitter Cutoff Current               | I <sub>EBO</sub>      | $V_{EBO}$ =8.0V, $I_{C}$ =0                                                      |     |     | 100 | μΑ   |  |  |
| ON CHARACTERISTICS                   |                       |                                                                                  |     |     |     |      |  |  |
| DC Current Gain                      | $h_{FE}$              | I <sub>C</sub> =4.0A, V <sub>CE</sub> =5.0V                                      | 10  |     |     |      |  |  |
| Collector-Emitter Saturation Voltage | V <sub>CE (SAT)</sub> | I <sub>C</sub> =4.0A, I <sub>B</sub> =800mA                                      |     |     | 8.0 | V    |  |  |
| Base-Emitter Saturation Voltage      | V <sub>BE (SAT)</sub> | I <sub>C</sub> =4.0A, I <sub>B</sub> =800mA                                      |     |     | 1.2 | V    |  |  |
| SWITCHING CHARACTERISTICS            |                       |                                                                                  |     |     |     |      |  |  |
| On Time                              | t <sub>ON</sub>       | \/ -150\/ I -5 0A                                                                |     |     | 1.0 | μs   |  |  |
| Storage Time                         | ts                    | $V_{CC}$ =150V, $I_{C}$ =5.0A<br>$I_{B1}$ = $I_{B2}$ =1.0A, $R_{L}$ =30 $\Omega$ |     |     | 2.5 | μs   |  |  |
| Fall Time                            | t <sub>F</sub>        | IB1 IB2 - 1.0M, KL - 3012                                                        |     |     | 0.5 | μs   |  |  |


Note: Pulse Test: Pulse Width=300 $\mu$ s, Duty Cycle  $\leq 2.0\%$ 


## **■ TYPICAL CHARACTERISTIC**














UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

