
DUAL D FLIP-FLOP WITH SET AND RESET High-Speed Silicon-Gate CMOS

The IN74AC74 is identical in pinout to the LS/ALS74, HC/HCT74. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LS/ALS outputs.

This device consists of two D flip-flops with individual Set, Reset, and Clock inputs. Information at a D-input is transferred to the corresponding Q output on the next positive going edge of the clock input. Both Q and Q outputs are available from each flip-flop. The Set and Reset inputs are asynchronous.

- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA; 0.1 μA @ 25°C
- High Noise Immunity Characteristic of CMOS Devices
- Outputs Source/Sink 24 mA

ORDERING INFORMATION

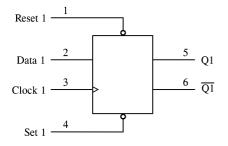
IN74AC74N Plastic IN74AC74D SOIC $T_A = -40^\circ$ to 85° C for all packages

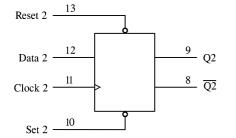
PIN ASSIGNMENT

reset 1	1•	14	v _{cc}
DATA 1	2	13	RESET 2
CLOCK 1	3	12	DATA2
Set 1	4	11	CLOCK 2
Q1 [5	10	SET 2
$\overline{\mathrm{Q1}}$	6	9] Q2
gnd [7	8	$\overline{Q2}$

FUNCTION TABLE

	In	puts		Ou	tputs
Set	Res	Clock	Data	Q	Ø
	et				
L	Н	Х	Х	Н	L
Н	L	Х	Х	L	Н
L	L	Х	Х	H	H [*]
Н	Н		Н	Н	L
Н	Н		L	L	Н
Н	Н	L	Х	No	
				Cha	ange
Н	Н	Н	Х	No	
				Change	
Н	Н		Х	No	
				Cha	ange


*Both outputs will remain high as long as Set and Reset are low, but the output states are unpredictable if Set and Reset go high simultaneously.


X = don't care

1

LOGIC DIAGRAM

PIN 14 = V_{CC} PIN 7 = GND

MAXIMUM RATINGS^{*}

Parameter	Value	Unit
DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
DC Input Current, per Pin	±20	mA
DC Output Sink/Source Current, per Pin	±50	mA
DC Supply Current, V _{CC} and GND Pins	±50	mA
Power Dissipation in Still Air, Plastic DIP+	750	mW
SOIC Package+	500	
Storage Temperature	-65 to +150	°C
Lead Temperature, 1 mm from Case for 10	260	°C
Seconds		
(Plastic DIP or SOIC Package)		
	Parameter DC Supply Voltage (Referenced to GND) DC Input Voltage (Referenced to GND) DC Output Voltage (Referenced to GND) DC Input Current, per Pin DC Output Sink/Source Current, per Pin DC Supply Current, V _{CC} and GND Pins Power Dissipation in Still Air, Plastic DIP+ SOIC Package+ Storage Temperature Lead Temperature, 1 mm from Case for 10 Seconds	ParameterValueDC Supply Voltage (Referenced to GND)-0.5 to +7.0DC Input Voltage (Referenced to GND)-0.5 to V _{CC} +0.5DC Output Voltage (Referenced to GND)-0.5 to V _{CC} +0.5DC Input Current, per Pin±20DC Output Sink/Source Current, per Pin±50DC Supply Current, V _{CC} and GND Pins±50Power Dissipation in Still Air, Plastic DIP+ SOIC Package+500Storage Temperature-65 to +150Lead Temperature, 1 mm from Case for 10 Seconds260

^{*}Maximum Ratings are those values beyond which damage to the device may occur.

Functional operation should be restricted to the Recommended Operating Conditions.

+Derating - Plastic DIP: - 10 mW/°C from 65° to 125°C

SOIC Package: : - 7 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
TJ	Junction Temperature (PDIP)		140	°C
T _A	Operating Temperature, All Package Types	-40	+85	°C
I _{OH}	Output Current - High		-24	mA
I _{OL}	Output Current - Low		24	mA
t _r , t _f	Input Rise and Fall Time [*] V _{CC} =3.0 V	0	150	ns/V
	(except Schmitt Inputs) V _{CC} =4.5 V	0	40	
	V _{CC} =5.5 V	0	25	

 $^{*}V_{IN}$ from 30% to 70% V_{CC}

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range GND \leq (V_{IN} or V_{OUT}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

IN74AC74

		ERISTICS (Voltages Refere		,		
			V_{CC}		ranteed	
					imits	
Symbol	Parameter	Test Conditions	V	25 °C	-40°C to	Unit
					85°C	
VIH	Minimum High-	V_{OUT} =0.1 V or V_{CC} -0.1 V	3.0	2.1	2.1	V
	Level Input		4.5	3.15	3.15	
	Voltage		5.5	3.85	3.85	
VIL	Maximum Low -	V_{OUT} =0.1 V or V_{CC} -0.1 V	3.0	0.9	0.9	V
	Level Input		4.5	1.35	1.35	
	Voltage		5.5	1.65	1.65	
V _{OH}	Minimum High-	Ι _{ΟUT} ≤ -50 μΑ	3.0	2.9	2.9	V
	Level Output		4.5	4.4	4.4	
	Voltage	*	5.5	5.4	5.4	
		$V_{\rm IN} = V_{\rm IH}$ or $V_{\rm IL}$				
		I _{OH} =-12 mA	3.0	2.56	2.46	
		I _{OH} =-24 mA	4.5	3.86	3.76	
		I _{OH} =-24 mA	5.5	4.86	4.76	
V _{OL}	Maximum Low-	$I_{OUT} \le 50 \ \mu A$	3.0	0.1	0.1	V
	Level Output		4.5	0.1	0.1	
	Voltage	*	5.5	0.1	0.1	
		$V_{\rm IN}=V_{\rm IH}$ or $V_{\rm IL}$				
		I _{OL} =12 mA	3.0	0.36	0.44	
		I _{OL} =24 mA	4.5	0.36	0.44	
		I _{OL} =24 mA	5.5	0.36	0.44	
I _{IN}	Maximum Input Leakage Current	V _{IN} =V _{CC} or GND	5.5	±0.1	±1.0	μA
I _{OLD}	+Minimum	V _{OLD} =1.65 V Max	5.5		75	mA
	Dynamic Output Current					
I _{OHD}	+Minimum	V _{OHD} =3.85 V Min	5.5		-75	mA
	Dynamic Output Current					
I _{CC}	Maximum Quiescent Supply Current (per Package)	V _{IN} =V _{CC} or GND	5.5	4.0	40	μA

DC ELECTRICAL CHARACTERISTICS(Voltages Referenced to GND)

*All outputs loaded; thresholds on input associated with output under test.

+Maximum test duration 2.0 ms, one output loaded at a time. Note: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}

IN74AC74

AC ELEC	TRICAL CHARACTERISTICS(CL=50pF,	Input t _i	$=t_f=3.0$	ns)			
		V _{cc}	G	uarantee	ed Limit		
Symbol	Parameter	V	25	°C	-40° 85°		Unit
			Min	Max	Min	Max	
f _{max}	Clock Frequency (Figure 1)	3.3 5.0	100 140		95 125		MHz
t _{PLH}	Propagation Delay, Clock to Q or Q (Figure 1)	3.3 5.0	4.5 3.5	13.5 10.0	4.0 3.0	16. 0 10. 5	ns
t _{PHL}	Propagation Delay, Clock to Q or Q (Figure 1)	3.3 5.0	3.5 2.5	14.0 10.0	3.5 2.5	14. 5 10. 5	ns
t _{PLH}	Propagation Delay, Set or Reset to Q or Q (Figure 2)	3.3 5.0	5.0 3.5	12.5 9.0	4.0 3.0	13. 0 10. 0	ns
t _{PHL}	Propagation Delay, Set or Reset to Q or Q (Figure 2)	3.3 5.0	4.0 3.0	12.0 9.5	3.5 2.5	13. 5 10. 5	ns
CIN	Maximum Input Capacitance	5.0	4	.5	4.	5	pF

C _{PD} Power Dissipation Capacitance 35 pF	ſ			Typical @25°C,V _{CC} =5.0 V	
		C_{PD}	Power Dissipation Capacitance	35	pF

Voltage Range 3.3 V is 3.3 V \pm 0.3 V Voltage Range 5.0 V is 5.0 V ± 0.5 V

TIMING R	EQUIREMENTS(CL=50pF,Input tr=tf=3.0	ns)	_		
		V_{CC}	Guarante		
Symbol	Parameter	V	25 °C	-40°C to 85°C	Unit
t _{su}	Minimum Setup Time, Data to Clock	3.3	4.0	4.5	ns
	(Figure 3)	5.0	3.0	3.0	
t _h	Minimum Hold Time, Clock to Data	3.3	0.5	0.5	ns
	(Figure 3)	5.0	0.5	0.5	
t _w	Minimum Pulse Width, Clock, Set or	3.3	5.5	7.0	ns
	Reset (Figures 1,2)	5.0	4.5	5.0	
t _{rec}	Minimum Recovery Time, Set or	3.3	0	0	ns
	Reset to Clock (Figure 2)	5.0	0	0	

^{*}Voltage Range 3.3 V is 3.3 V \pm 0.3 V

Voltage Range 5.0 V is 5.0 V ± 0.5 V

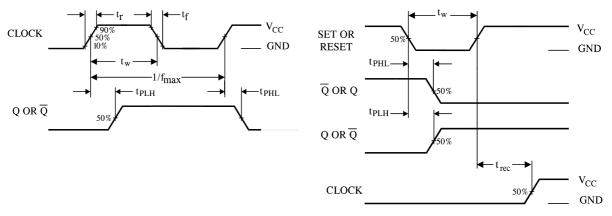


Figure 2. Switching Waveform

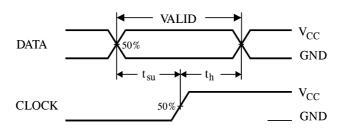
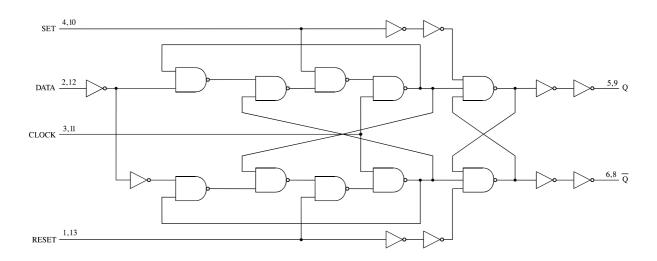



Figure 3. Switching Waveform

EXPANDED LOGIC DIAGRAM

