## Dual Retriggerable Monostable Multivibrator

The IN74HC123A is identical in pinout to the LS／ALS123．The device inputs are compatible with standard CMOS outputs；with pullup resistors，they are compatible with LS／ALSTTL outputs．

There are two trigger inputs，${ }^{-}$A INPUT（negative edge）and B INPUT（positive edge）．These inputs are valid for rising／falling signals．

The device may also be triggered by using the CLR input（positive－ edge）because of the Schmitt－trigger input；after triggering the output maintains the MONOSTABLE state for the time period determined by the external resistor $\mathrm{R}_{\mathrm{X}}$ and capacitor $\mathrm{C}_{\mathrm{X}}$ ．Taking CLR low breaks this MONOSTABLE STATE．If the next trigger pulse occurs during the MONOSTABLE period it makes the MONOSTABLE period longer．
－Outputs Directly Interface to CMOS，NMOS，and TTL
－Operating Voltage Range： 3.0 to 6.0 V
－Low Input Current： $1.0 \mu \mathrm{~A}$
－High Noise Immunity Characteristic of CMOS Devices


PIN ASSIGNMENT


PIN $16=V_{\text {CC }}$
PIN $8=$ GND
Note
（1）$C_{X}, R_{X}, D_{X}$ are external components．
（2）$D_{X}$ is a clamping diode．
The external capacitor is charged to $\mathrm{V}_{\mathrm{CC}}$ in the stand－by state，i．e．no trigger．When the supply voltage is turned off $\mathrm{C}_{\mathrm{X}}$ is discharged mainly through an internal parasitic diode． If $C_{X}$ is sufficiently large and $V_{C C}$ decreases rapidy，there will be some possibility of damaging the I．C．with a surge current or latch－up．If the voltage supply filter capacitor is large enough and $\mathrm{V}_{\mathrm{CC}}$ decrease slowly，the surge current is automatically limited and damage the I．C．is avoided．The maximum forward current of the parasitic diode is approximately 20 mA ．

| Inputs |  |  | Outputs |  | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{A}}$ | B | CLR | Q | $\overline{\mathrm{Q}}$ |  |
| ㄱ | H | H | 几 | マ | Output <br> Enable |
| X | L | H | L＊ | $\mathrm{H}^{*}$ | Inhibit |
| H | X | H | L＊ | $\mathrm{H}^{*}$ | Inhibit |
| L | $\checkmark$ | H | 几 | ㄴ | Output Enable |
| L | H | $\checkmark$ | $\Omega$ | ㄴ | Output Enable |
| X | X | L | L | H | Inhibit |

[^0]
## MAXIMUM RATINGS*

| Symbol | Parameter | Value | Unit |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CC }}$ | DC Supply Voltage (Referenced to GND) | -0.5 to +7.0 | V |
| $\mathrm{V}_{\text {IN }}$ | DC Input Voltage (Referenced to GND) | -1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5$ | V |
| $\mathrm{V}_{\text {OUT }}$ | DC Output Voltage (Referenced to GND) | -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |
| $\mathrm{I}_{\text {IN }}$ | DC Input Current, per Pin $\begin{array}{ll}\text { A, B, } \overline{C L R} \\ \mathrm{C}_{\mathrm{X}}, \mathrm{R}_{\mathrm{X}}\end{array}$ | $\begin{aligned} & \pm 20 \\ & \pm 30 \end{aligned}$ | mA |
| $\mathrm{I}_{\text {OUT }}$ | DC Output Current, per Pin | $\pm 25$ | mA |
| $\mathrm{I}_{\text {CC }}$ | DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND Pins | $\pm 50$ | mA |
| $\mathrm{P}_{\mathrm{D}}$ | Power Dissipation in Still Air, Plastic DIP+ SOIC Package+ | $\begin{aligned} & \hline 750 \\ & 500 \\ & \hline \end{aligned}$ | mW |
| Tstg | Storage Temperature | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| T | Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package) | 260 | ${ }^{\circ} \mathrm{C}$ |

*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.

+ Derating - Plastic DIP: - $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ}$ to $125^{\circ} \mathrm{C}$
SOIC Package: : $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ}$ to $125^{\circ} \mathrm{C}$


## RECOMMENDED OPERATING CONDITIONS

| Symbol | Parameter |  | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CC }}$ | DC Supply Voltage (Referenced to GND) |  | 3.0 ** | 6.0 | V |
| $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$ | DC Input Voltage, Output Voltage (Referenced to GND) |  | 0 | $\mathrm{V}_{\text {CC }}$ | V |
| $\mathrm{T}_{\text {A }}$ | Operating Temperature, All Package Types |  | -55 | +125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | Input Rise and Fall Time - CLR (Figure 2) | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{gathered} 1000 \\ 500 \\ 400 \\ \hline \end{gathered}$ | ns |
|  | A or B |  | - | No <br> Limit |  |
| $\mathrm{R}_{\mathrm{X}}$ | External Timing Resistor | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 4.5 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 10 \\ & 2.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1000 \\ & 1000 \\ & \hline \end{aligned}$ | $\mathrm{k} \Omega$ |
| $\mathrm{C}_{\mathrm{X}}$ | External Timing Capacitor |  | 0 | No <br> Limit | $\mu \mathrm{F}$ |

The In74HC123 will function at 2.0 V but for optimum pulse width stability, $\mathrm{V}_{\mathrm{CC}}$ should be above 3.0 V.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {IN }}\right.$ or $\left.\mathrm{V}_{\text {OUT }}\right) \leq \mathrm{V}_{\text {CC }}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or $\mathrm{V}_{\mathrm{CC}}$ ). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

| Symbol | Parameter | Test Conditions | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V} \end{gathered}$ | Guaranteed Limit |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} 25^{\circ} \mathrm{C} \text { to } \\ -55^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \leq 85 \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \leq 125 \\ { }^{\circ} \mathrm{C} \end{gathered}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Minimum HighLevel Input Voltage | $\begin{aligned} & \mid \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$ | $\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$ | $\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$ | V |
| $\mathrm{V}_{\text {IL }}$ | Maximum Low Level Input Voltage | $\begin{aligned} & \mid \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$ | $\begin{gathered} 0.5 \\ 1.35 \\ 1.8 \end{gathered}$ | $\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$ | V |
| $\mathrm{V}_{\mathrm{OH}}$ | Minimum HighLevel Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$ | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$ | $\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$ | $\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$ | V |
|  |  | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\mathrm{IL}}$ <br> $\left\|\mathrm{I}_{\text {OUT }}\right\| \leq 4.0 \mathrm{~mA}$ <br> $\left\|\mathrm{I}_{\text {OUT }}\right\| \leq 5.2 \mathrm{~mA}$ | $\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & 3.98 \\ & 5.48 \end{aligned}$ | $\begin{aligned} & 3.84 \\ & 5.34 \end{aligned}$ | $\begin{aligned} & 3.7 \\ & 5.2 \end{aligned}$ |  |
| $\mathrm{V}_{\text {OL }}$ | Maximum Low- <br> Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$ | V |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \mathrm{I}_{\text {OUT }} \leq 4.0 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 5.2 \mathrm{~mA} \\ & \hline \end{aligned}$ | $\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 0.26 \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$ |  |
| $\mathrm{I}_{\text {IN }}$ | Maximum Input Leakage Current (A, B, CLR) | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND | 6.0 | $\pm 0.1$ | $\pm 1.0$ | $\pm 1.0$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {IN }}$ | Maximum Input Leakage Current $\left(\mathrm{R}_{\mathrm{X}}, \mathrm{C}_{\mathrm{X}}\right)$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND | 6.0 | $\pm 50$ | $\pm 500$ | $\pm 500$ | nA |
| $\mathrm{I}_{\mathrm{CC}}$ | Maximum <br> Quiescent Supply <br> Current <br> (per Package) <br> Standby State | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND <br> Q1 and Q2 = Low <br> $\mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A}$ | 6.0 | 130 | 220 | 350 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {CC }}$ |  |  |  | $25^{\circ} \mathrm{C}$ | $\begin{gathered} -45^{\circ} \mathrm{C} \\ \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} -55^{\circ} \mathrm{C} \\ \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$ | $\mu \mathrm{A}$ |
|  | Maximum Supply Current (per Package) Active State | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND <br> Q1 and Q2 = High <br> $\mathrm{I}_{\text {OUT }}=0 \mu \mathrm{~A}$ <br> Pins 15 and $7=0.5 \mathrm{~V}_{\mathrm{CC}}$ | 6.0 | 400 | 600 | 800 |  |

AC ELECTRICAL CHARACTERISTICS ( $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}$ )

| Symbol | Parameter | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V} \end{gathered}$ | Guaranteed Limit |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { to } \\ -55^{\circ} \mathrm{C} \\ \hline \end{gathered}$ | $\begin{gathered} \leq 85 \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \leq 125 \\ { }^{\circ} \mathrm{C} \end{gathered}$ |  |
| $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ | Maximum Propagation Delay, Input $\overline{\mathrm{A}}$ or B to Q or $\overline{\mathrm{Q}}$ (Figures 1 and 3) | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{gathered} 255 \\ 50 \\ 45 \end{gathered}$ | $\begin{gathered} \hline 320 \\ 65 \\ 55 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 385 \\ 75 \\ 65 \end{gathered}$ | ns |
| $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ | Maximum Propagation Delay, $\overline{\mathrm{CLR}}$ to Q or $\mathrm{Q}-$ (Figures 2 and 3) | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{gathered} 215 \\ 45 \\ 35 \end{gathered}$ | $\begin{gathered} 270 \\ 55 \\ 45 \end{gathered}$ | $\begin{gathered} 325 \\ 65 \\ 55 \end{gathered}$ | ns |
| $\mathrm{t}_{\text {TLH }}, \mathrm{t}_{\text {THL }}$ | Maximum Output Transition Time, Any Output(Figures 2 and 3) | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & 75 \\ & 16 \\ & 14 \end{aligned}$ | $\begin{aligned} & 95 \\ & 20 \\ & 17 \end{aligned}$ | $\begin{gathered} \hline 110 \\ 22 \\ 20 \end{gathered}$ | ns |
| $\mathrm{C}_{\text {IN }}$ | $\begin{array}{ll}\text { Maximum Input Capacitance } & \overline{\mathrm{A}}, \mathrm{B}, \overline{\mathrm{CLR}} \\ & \mathrm{C}_{X}, \mathrm{R}_{X}\end{array}$ | - | $\begin{aligned} & 10 \\ & 25 \end{aligned}$ | $\begin{aligned} & 10 \\ & 25 \end{aligned}$ | $\begin{aligned} & 10 \\ & 25 \end{aligned}$ | pF |


|  | Power Dissipation Capacitance <br> (Per Multivibrator) | Typical @25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |  |
| :---: | :--- | :---: | :---: |
| $\mathrm{C}_{\mathrm{PD}}$ | Used to determine the no-load dynamic power <br> consumption: <br> $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \mathrm{V}_{\mathrm{CC}}{ }^{2} \mathrm{f}+\mathrm{I}_{\mathrm{CC}} \mathrm{V}_{\mathrm{CC}}$ | 150 | pF |

TIMING REQUIREMENTS ( $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}$ )

| Symbol | Parameter | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V} \end{gathered}$ | Guaranteed Limit |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} 25^{\circ} \mathrm{C} \text { to } \\ -55^{\circ} \mathrm{C} \end{gathered}$ | $\leq 85{ }^{\circ} \mathrm{C}$ | $\leq 125^{\circ} \mathrm{C}$ |  |
| $\mathrm{t}_{\text {rec }}$ | Minimum Recovery Time, Inactive to A or B (Figure 2) | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | ns |
| $\mathrm{t}_{\mathrm{w}}$ | Minimum Pulse Width, Input A or B (Figure 1) | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{gathered} 100 \\ 20 \\ 17 \end{gathered}$ | $\begin{gathered} 125 \\ 25 \\ 20 \end{gathered}$ | $\begin{gathered} 150 \\ 30 \\ 25 \end{gathered}$ | ns |
| $\mathrm{t}_{\mathrm{w}}$ | Minimum Pulse Width, CLR (Figure 2) | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{gathered} 100 \\ 20 \\ 17 \end{gathered}$ | $\begin{gathered} 125 \\ 25 \\ 20 \end{gathered}$ | $\begin{gathered} 150 \\ 30 \\ 25 \end{gathered}$ | ns |
| $\mathrm{tr}_{\mathrm{r}, \mathrm{t}}$ | Maximum Input Rise and Fall Times, CLR <br> (Figure 2) | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | $\begin{gathered} 1000 \\ 500 \\ 400 \\ \hline \end{gathered}$ | $\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$ | $\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$ | ns |
|  | A or B (Figure 2) | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$ | No Limit |  |  |  |



Figure 1. Switching Waveforms


Figure 2. Switching Waveforms

*Includes all probe and jig capacitance
Figure 3. Test Circuit

TIMING DIAGRAM


EXPANDED LOGIC DIAGRAM


## N SUFFIX PLASTIC DIP

(MS - 001BB)


\section*{| $\Phi \mid 0.25(0.010)(M)$ | T |
| :--- | :--- |}

## NOTES:

1. Dimensions "A", "B" do not include mold flash or protrusions. Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side.

|  | Dimension, mm |  |
| :---: | :---: | :---: |
| Symbol | MIN | MAX |
| $\mathbf{A}$ | 18.67 | 19.69 |
| $\mathbf{B}$ | 6.1 | 7.11 |
| $\mathbf{C}$ |  | 5.33 |
| $\mathbf{D}$ | 0.36 | 0.56 |
| $\mathbf{F}$ | 1.14 | 1.78 |
| $\mathbf{G}$ | 2.54 |  |
| $\mathbf{H}$ | 7.62 |  |
| $\mathbf{J}$ | $0^{\circ}$ | $10^{\circ}$ |
| $\mathbf{K}$ | 2.92 | 3.81 |
| $\mathbf{L}$ | 7.62 | 8.26 |
| $\mathbf{M}$ | 0.2 | 0.36 |
| $\mathbf{N}$ | 0.38 |  |

## D SUFFIX SOIC

(MS - 012AC)
16

|  | Dimension, mm |  |
| :---: | :---: | :---: |
| Symbol | MIN | MAX |
| $\mathbf{A}$ | 9.8 | 10 |
| $\mathbf{B}$ | 3.8 | 4 |
| $\mathbf{C}$ | 1.35 | 1.75 |
| $\mathbf{D}$ | 0.33 | 0.51 |
| $\mathbf{F}$ | 0.4 | 1.27 |
| $\mathbf{G}$ | 1.27 |  |
| $\mathbf{H}$ | 5.72 |  |
| $\mathbf{J}$ | $0^{\circ}$ | $8^{\circ}$ |
| $\mathbf{K}$ | 0.1 | 0.25 |
| $\mathbf{M}$ | 0.19 | 0.25 |
| $\mathbf{P}$ | 5.8 | 6.2 |
| $\mathbf{R}$ | 0.25 | 0.5 |


[^0]:    X＝don＇t care
    ＊－except for monostable period

