FGH60N60SFD 600V, 60A Field Stop IGBT

Features
- High current capability
- Low saturation voltage: $V_{CE(sat)} = 2.3V$ @ $I_C = 60A$
- High input impedance
- Fast switching
- RoHS compliant

Applications
- Induction Heating, UPS, SMPS, PFC

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CES}</td>
<td>Collector to Emitter Voltage</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>V_{GES}</td>
<td>Gate to Emitter Voltage</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector Current</td>
<td>@ $T_C = 25^\circ$C</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>@ $T_C = 100^\circ$C</td>
<td>60</td>
</tr>
<tr>
<td>$I_{CM(1)}$</td>
<td>Pulsed Collector Current</td>
<td>@ $T_C = 25^\circ$C</td>
<td>180</td>
</tr>
<tr>
<td>P_D</td>
<td>Maximum Power Dissipation</td>
<td>@ $T_C = 25^\circ$C</td>
<td>378</td>
</tr>
<tr>
<td></td>
<td></td>
<td>@ $T_C = 100^\circ$C</td>
<td>151</td>
</tr>
<tr>
<td>T_J</td>
<td>Operating Junction Temperature</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage Temperature Range</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_L</td>
<td>Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1: Repetitive test, Pulse width limited by max. junction temperature

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{VJC}(IGBT)$</td>
<td>Thermal Resistance, Junction to Case</td>
<td>-</td>
<td>0.33</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{VJC}(Diode)$</td>
<td>Thermal Resistance, Junction to Case</td>
<td>-</td>
<td>1.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{UA}</td>
<td>Thermal Resistance, Junction to Ambient</td>
<td>-</td>
<td>40</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

General Description
Using Novel Field Stop IGBT Technology, Fairchild’s new series of Field Stop IGBTs offer the optimum performance for Induction Heating, UPS, SMPS and PFC applications where low conduction and switching losses are essential.
Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Device Marking</th>
<th>Device</th>
<th>Package</th>
<th>Packaging Type</th>
<th>Qty per Tube</th>
<th>Max Qty per Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGH60N60SFD</td>
<td>FGH60N60SFDTU</td>
<td>TO-247</td>
<td>Tube</td>
<td>30ea</td>
<td>-</td>
</tr>
</tbody>
</table>

Electrical Characteristics of the IGBT

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV_CES</td>
<td>Collector to Emitter Breakdown Voltage V_GE = 0V, I_C = 250µA</td>
<td>600</td>
<td></td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>∆BV_CES</td>
<td>Temperature Coefficient of Breakdown Voltage V_GE = 0V, I_C = 250µA</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>V/°C</td>
</tr>
<tr>
<td>ICES</td>
<td>Collector Cut-Off Current V_CE = V_CES, V_GE = 0V</td>
<td>-</td>
<td>-</td>
<td>250</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>IGES</td>
<td>G-E Leakage Current V_GE = V_GES, V_CE = 0V</td>
<td>-</td>
<td>-</td>
<td>±400</td>
<td>nA</td>
<td></td>
</tr>
</tbody>
</table>

Off Characteristics

On Characteristics

Dynamic Characteristics

Switching Characteristics
Electrical Characteristics of the Diode

TC = 25°C unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFM</td>
<td>Diode Forward Voltage</td>
<td>I_F = 30A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TC = 25°C</td>
<td>-</td>
<td>2.0</td>
<td>2.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TC = 125°C</td>
<td>-</td>
<td>1.8</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>trr</td>
<td>Diode Reverse Recovery Time</td>
<td>I_ES = 30A, dI_ES/dt = 200A/µs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TC = 25°C</td>
<td>-</td>
<td>47</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TC = 125°C</td>
<td>-</td>
<td>179</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Qrr</td>
<td>Diode Reverse Recovery Charge</td>
<td>I_ES = 30A, dI_ES/dt = 200A/µs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TC = 25°C</td>
<td>-</td>
<td>83</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TC = 125°C</td>
<td>-</td>
<td>567</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Typical Performance Characteristics

Figure 1. Typical Output Characteristics

Figure 2. Typical Output Characteristics

Figure 3. Typical Saturation Voltage Characteristics

Figure 4. Transfer Characteristics

Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 6. Saturation Voltage vs. V_{GE}
Typical Performance Characteristics

Figure 7. Saturation Voltage vs. V_{GE}

![Graph showing saturation voltage vs. gate-emitter voltage for different currents and temperatures.]

Figure 8. Saturation Voltage vs. V_{GE}

![Graph showing saturation voltage vs. gate-emitter voltage for different currents and temperatures.]

Figure 9. Capacitance Characteristics

![Graph showing capacitance characteristics vs. collector-emitter voltage for different conditions.]

Figure 10. Gate charge Characteristics

![Graph showing gate charge characteristics vs. gate-emitter voltage for different voltages and temperatures.]

Figure 11. SOA Characteristics

![Graph showing safe operating area vs. collector-emitter voltage for different conditions.]

Figure 12. Turn off Switching SOA Characteristics

![Graph showing turn off switching safe operating area vs. collector-emitter voltage for different conditions.]

Collector Emitter Voltage, V_{CE} [V]

Gate Emitter Voltage, V_{GE} [V]

Collector Current, I_C [A]

Safe Operating Area

$V_{GE} = 15V, T_J = 125^\circ C$

Curves must be derated linearly with increase in temperature.
Typical Performance Characteristics

Figure 13. Turn-on Characteristics vs. Gate Resistance

Figure 14. Turn-off Characteristics vs. Gate Resistance

Figure 15. Turn-on Characteristics vs. Collector Current

Figure 16. Turn-off Characteristics vs. Collector Current

Figure 17. Switching Loss vs Gate Resistance

Figure 18. Switching Loss vs Collector Current
Typical Performance Characteristics

Figure 19. Forward Characteristics

![Forward Characteristics](image1)

Figure 20. Reverse Current

![Reverse Current](image2)

Figure 21. Stored Charge

![Stored Charge](image3)

Figure 22. Reverse Recovery Time

![Reverse Recovery Time](image4)

Figure 23. Transient Thermal Impedance of IGBT

![Transient Thermal Impedance](image5)
Mechanical Dimensions

TO-247AB (FKS PKG CODE 001)

Dimensions in Millimeters
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
EcoSPARK™
EfficientMax™
EZWITCH™

Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FETBench™
FlashWriter™
FPS™

F-PFS™
FRFET™
Global Power Resource™
Green FPS™
Green FPS™ e-Series™
Gmax™
GTO™
InteliMAX™
ISOLPLANAR™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MillerDrive™
MotionMax™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®

PDP SPM™
Power-SPM™
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/kW at a time™
SmartMax™
SMART START™
SPM™
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupremOS™
SyncFET™
Sync-Lock™

The Power Franchise®
TinyBoost™
TinyBuck™
TinyLogic™
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TriFault Detect™
TRUECURRENT™

µSerDes™
UHC™
Ultra FRFET™
UniFET™
VCO™
VisualMax™
XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE THE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information.

Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information.

Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

Rev. 140